

Μικροσκοπώ → παρατηρώ μικρά αντικείμενα εξετάζω προσεκτικά

Μικροσκόπιο: Όργανο παρατήρησης μικρών αντικειμένων

The Microscope → Το Μικροσκόπιο
 Light Microscope (Light)
 Atomic Force Microscope (Tip)
 Electron Microscope (Electrons)

Image : Imaging : Picture

Εικόνες που εμφανίζουν αντίθεση φωτεινότητας ή βαθμίδες χρωματικών αποχρώσεων ή άλλων χαρακτηριστικών με στόχο την εξαγωγή πληροφοριών σχετικά με την δομή των υλικών.

Οπτικό μικροσκόπιο: για φωτισμό του δείγματος χρησιμοποιείται δέσμη ακτίνων ορατού φωτός, ενώ το σύστημα μεγέθυνσης αποτελείται από τους κλασσικούς γυάλινους φακούς.

Ηλεκτρονικό μικροσκόπιο: για φωτισμό χρησιμοποιείται δέσμη ηλεκτρονίων υψηλής ενέργειας, ενώ το σύστημα μεγέθυνσης αποτελείται από ηλεκτρομαγνητικούς φακούς, δηλαδή πηνία με διαμπερείς κυλινδρικούς πυρήνες σιδήρου που παράγουν μη ομογενή μαγνητικά πεδία

Η τεχνική διερεύνησης της δομής

Ηλεκτρονική μικροσκοπία διέλευσης

Γιατί;

Δέσμες από σύμφωνα ηλεκτρόνια με ενέργειες 100-300 keV διερχόμενα από την ύλη συμπεριφέρονται ως δέσμες υλοκυμάτων και προκαλούν μια σειρά από φαινόμενα η αξιοποίηση των οποίων επιτρέπει τη μελέτη της δομής από τη μεσοσκοπική έως την νανο – ατομική κλίμακα διαστάσεων

Το μήκος κύματος της ηλεκτρονικής δέσμης στα 200kV είναι λ=0.00251 nm

ElMicLa

Η Ηλεκτρονική Μικροσκοπία διερευνά σε ευρύ φάσμα κλίμακας μήκους και χρόνου. Μελετά τις δομικές ιδιότητες κυρίως σε

Μεσοσκοπικό, Νανοσκοπικό και Ατομικό επίπεδο.

Ηλεκτρονική Μικροσκοπία μεγάλη διακριτική ικανότητα - μεγάλο βάθος πεδίου βάθος πεδίου → πόσο από το δείγμα που παρατηρούμε είναι ταυτόχρονα εστιασμένο Περίθλαση ηλεκτρονίων → προσδιορισμός της κρυσταλλικής δομής, σύνδεση των εικόνων περίθλασης με τις εικόνες μεγέθυνσης, μελέτη των ατελειών της δομής.

Μεωνεκτήματα Υψηλό κόστος αγοράς και συντήρησης Υψηλό κενό Λεπτά δείγματα – πολύ μικρή περιοχή παρατήρησης Επίπονη και χρονοβόρα διαδικασία προετοιμασίας δειγμάτων 2897 Joseph John Thompson → ανακάλυψη του ηλεκτρονίου

1925 Louis de Broglie →προέβλεψε την κυματική φύση των ηλεκτρονίων

1927 Davisson & Germer και Thompson & Reid → απέδειξαν την κυματική φύση των ηλεκτρονίων

1932 Knoll& Ruska → πρότειναν την κατασκευή μαγνητικών φακών και του πρώτου ΗΜ

1936 Metropolis Vickers EM1 → πρώτο εμπορικό μικροσκόπιο, UK

1939 Siemens & Halske → από τη Γερμανία διάθεση των μικροσκο πίων στη διεθνή αγορά

1949 Heidenreich → λείανση λεπτών μεταλλικών φύλλων για παρατήρηση στο ηλεκτρονικό μικροσκόπιο

1977 Hirsch et al. \rightarrow theory of diffraction contrast imaging

1986 E. Ruska → Nobel Price
1997 O. Krivanek →1st Aberration corrector for STEM
1998 M. Haider →1st Aberration corrector for TEM

ΗΜ πρώτης σειράς παραγωγής της Siemens 1939

a)HREM JEOL 1.25 MV, b)Hitachi UHVTEM, c)Phillips 200 kV analytical, d)VG 100 kV UHVSEM

Laboratory Resources

TEM JEOL 1010 100 KeV

HRTEM JEOL 2000FX Resolution: 0.28 nm 200 KeV

HRTEM JEOL 2011 Resolution: 0.194 nm 200 KeV

Cold Field Emission Electron Gun TEM/STEM - 200 KeV HRTEM: 0.19 nm <u>HRSTEM: 0.14</u> nm

Ορολογία

Ιδανικά Στερεά: ομογενή τέλεια κρυσταλλικά υλικά απείρων διαστάσεων **Πραγματικά Στερεά:** άμορφα, κρυσταλλικά ή μερικώς κρυσταλλικά που περιέχουν κρυστάλλους έστω και σε νανοσκοπική κλίμακα **Ομογενή Πραγματικά Στερεά:** κρυσταλλικά υλικά συγκεκριμένων διαστάσεων με ή χωρίς ατέλειες δομής (σημειακές, γραμμικές, διεπιφάνειες) **Ετερογενή Πραγματικά Στερεά:** συμπλέγματα όλων τον μορφών της συμπυκνωμένης ύλης.

Ιδανικός κρύσταλλος

Άπειρες διαστάσεις, άτομα σε ηρεμία, χημικά καθαρός Τέλειος κρύσταλλος

Ένα ατομικό, μοριακό, ή συνεχές μοτίβο που επαναλαμβάνεται υπακούοντας συγκεκριμένους κανόνες συμμετρίας (σημείου ή χώρου) Ατελής κρύσταλλος

Οι κανόνες συμμετρίας παραβιάζονται τοπικά

- Επιφάνεια
- Περιέχει ατέλειες μηδενικών
 διαστάσεων έως τρισδιάστατες

Ατέλειες μηδενικών διαστάσεων

Ενδογενείς / εγγενείς
 ατέλειες σημείου

- Άτομα προσμίξεων
 Γραμμικές ατέλειες
- Εξαρμόσεις
- Disclinations

Δυσδιάστατες ατέλειες

- Σφάλματα επιστοίβασης
- Ομοφασικές διεπιφάνειες
- Όρια κρυσταλλιτών διδυμίες
- Ετεροφασικές διεπιφάνειες
- Διεπιφάνειες ανάστροφης
 πολικότητας
- Τρισδιάστατες ατέλειες
- Ιζήματα Εγκλείσματα
- Συσσωματώματα ατελειών σημείου
- κβαντικές τελείες

<u>Τι μελετάμε με την ΤΕΜ?</u>

Δομικές ιδιότητες

Conventional TEM

Περίθλαση ηλεκτρονίων → συμμετρία, προσδιορισμός της κρυσταλλικής δομής, προσδιορισμός διαφόρων φάσεων και άμορφων περιοχών, τάξη- αταξία

Εικόνες δυναμικής σκέδασης ηλεκτρονίων → Γραμμικές και εκτεταμένες ατέλειες, Ατέλειες όγκου, Συσσωματώματα, Εγκλείσματα, Ομοφασικές και ετεροφασικές διεπιφάνειες, Διεπιφάνειες ανάστροφης πολικότητας, Μετασχηματισμοί φάσεων.

High resolution TEM (HRTEM)

Ατομική δομή υλικών, ατελειών δομής και διεπιφανειών Τοπικά πεδία παραμόρφωσης

<u>Τι μελετάμε με την αναλυτική ΤΕΜ?</u>

Mικροανάλυση (Energy Dispersive X-ray Spectroscopy)

Χημική σύσταση και τοπικές μεταβολές της

Electron Energy Loss Spectroscopy

Χημική σύσταση

Τοπική δεσμική κατάσταση, Ηλεκτρονικές Ιδιότητες

Ερωτήματα

- Μορφολογία και δομή
- Σχέσεις προσανατολισμού/ επιταξιακή ανάπτυξη
- Είδος και πυκνότητα ατελειών δομής
- Τοπική ατομική δομή διεπιφανειών και ατελειών
- Νανο-μηχανισμοί υπεύθυνοι για την εισαγωγή ατελειών
- Προσαρμογή της κακής δομικής συναρμογής
- Τοπικά πεδία παραμόρφωσης
- Τοπική χημική σύσταση

Η ελάχιστη απόσταση δύο σημείων στο αντικείμενο που είναι διακριτά στην εικόνα (είδωλο).

Ανάλυση - Διακριτική Ικανότητα

Το ανθρώπινο μάτι μπορεί αν διακρίνει σημεία που απέχουν περίπου 0.1 mm.

Για ηλεκτρόνια $\Lambda = h/p$, Κινητική ενέργεια eV = $(m_0v^2)/2$ $p = m_0v$, $\Lambda = h/(2m_0eV)^{1/2}$ κλασσικά $\Lambda = h/[2m_0eV[1 + eV/2m_0c^2]]^{1/2}$ σχετικιστικά $\Lambda = [1.5 / (V + 10^{-6} V^2)]^{1/2}$ nm Ηλεκτρόνια 200 keV: $\Lambda_{nonrelativistic} = 0.00273$ nm $\Lambda_{relativistic} = 0.00251$ nm

Table 1. Interprable resolution as a function of electron energy and C_s va						
Energy (keV)	λ(Α)	$C_s \ (mm)$	δ (A)			
100	0.0370	0.7	3.0			
200	0.0251	0.8	2.2			
300	0.197	0.9	1.8			
400	0.164	1.0	1.7			
600	0.126	1.5	1.55			
1000	0.0087	1.7	1.17			
2000	0.0050	4.0	0.99			

Προσοχή στην επεξεργασία των εικόνων!!! Στην ΤΕΜ οι εικόνες είναι 2D απεικονίσεις 3D δειγμάτων. Όλη η πληροφορία που μας δίνει η ΤΕΜ (εικόνες μεγέθυνσης, εικόνες περίλθασης, φάσματα) προέρχεται από όλο το πάχος του δείγματος

Χαρακτηρίζεται ως "no depth sensitive" τεχνική

Συμπληρωματικές τεχ νικές, surface and depth sensitive, χρησιμοποιούνται για τον πλήρη χαρακτηρισμό των υλικών, όπως SEM, Auger spectroscopy, Rutherford backscattering,

Όγκος αλληλεπίδρασης

Kanaya-Okayama εύρος του όγκου αλληλεπίδρασης

$$R = \frac{0.0276AE_0^{1.67}}{Z^{0.889}\rho}$$

όπου A = ατομική μάζα E_0 = ενέργεια δέσμης keV Z = ατομικός αριθμός ρ = πυκνότητα σε g/cm³

Μεγάλη ενέργεια e

Κρύσταλλος LaB₆

Wehnelt

Ηλεκτρομαγνητικός φακός

Σφάλματα μαγνητικών φακών -> σφαιρική εκτροπή C_s χρωματική εκτροπή C_c

Η σφαιρική εκτροπή C, οφείλεται στη μεταβολή της εστιακής απόστασης του φακού λόγω της διάδοσης μη αξονικών ηλεκτρονίων.

Η χρωματική εκτροπή C_c οφείλεται στη μικρή αστάθεια της τάσης λειτουργίας του μικροσκοπίου και της έντασης του ρεύματος που διαρρέει τον φακό

Η διακριτική ικανότητα περιορίζεται λόγω του σφάλματος της σφαιρικής εκτροπής του αντικειμενικού φακού.

Διακριτική ικανότητα \rightarrow d = 0.62(C_s Λ^3)^{1/4}

Η χρωματική εκτροπή και ο αστιγματισμός επίσης μειώνουν τη διακριτική ικανότητα.

Τοπική φθορά-μόλυνση του δείγματος από την προσπίπτουσα δέσμη ηλεκτρονίων υψηλής ενέργειας.

Μεγέθυνση - Κλίμακα

- -At 1000 X, 1 cm = 10 μ m
- $-At 10,000X, 1 cm = 1 \mu m$
- -At 50,000X, 1 cm = 200 nm
- -At 100,000X, 1 cm = 100 nm
- -A = 500,000X, 1 cm = 20 nm = 200Å

Προετοιμασία δειγμάτων

Δίσκοι διαμέτρου 3 mm για παρατηρήσεις επίπεδης διατομής (plan view).

Λεπτές ταινίες (1 mm) για παρατηρήσεις εγκάρσιας διατομής (cross-section).

Ηλεκτροχημική λείανση - μηχανική λείανση - τελική λείανση με δέσμες ιόντων.

«Artifacts» δημιουργούνται με τις παραπάνω διεργασίες.

Το εμβαδόν της διαφανούς περιοχής στην ηλεκτρονική δέσμη, ενός δείγματος επίπεδης διατομής, είναι περίπου 30 μm² με μέσο πάχος 35 nm.

Συνεπώς, ο όγκος του υλικού που μελετάται σε κάθε δείγμα είναι της τάξης του 1 μm³.

Ένα κυβικό μέτρο είναι ίσο με 10¹⁸ μm³ άρα χρειαζόμαστε ίσο αριθμό δειγμάτων για την παρατήρηση αντίστοιχης ποσότητας υλικού.

Η Ηλεκτρονική Μικροσκοπία είναι μία δειγματοληπτική τεχνική.

Προετοιμασία δειγμάτων εγκάρσιας διατομής για μελέτη επιταξιακών δομών

NMMG

Διαδρομή της δέσμης των ηλεκτρονίων

Συνθήκες παρατήρησης κρυσταλλικού δείγματος στην

ElMicLa

+

NMMG

國

(Bright field) (Dark field)

Το μικροσκόπιο είναι ένα οπτικό σύστημα το οποίο μετασχηματίζει ένα σημείο του δείγματος σε μια περιοχή στην εικόνα.

Λόγω της ισχυρής σκέδασης των ηλεκτρονίων με την ύλη, το πλάτος και η φάση των περιθλώμενων δεσμών εξαρτώνται από το υλικό (το περιοδικό δυναμικό και το πάχος του κρυστάλλου).

Μέσα προβολής και καταγραφής Φθορίζουσα οθόνη Φωτογραφικές Πλάκες CCD camera -ενισχυτής σήματος εικόνας - TV monitor

CMOS camera

Εικόνα φωτεινού πεδίου

Εικόνα περίθλασης

Εικόνες φωτεινού και σκοτεινού πεδίου

<u>0.1 μ</u>m

GaAs

Το πρόσημο του διανύσματος Burgers εξαρτάται από τη φορά της διεύθυνσης της εξάρμοσης

Κανόνας FS/RH (Hirth & Lothe) b ⊥ ξ για εξάρμοση ακμής b || ξ για ελικοειδή εξάρμοση

Κύκλωμα FS/RH στον πραγματικό και στον τέλειο κρύσταλλο που χρησιμοποιείται ως κρύσταλλος αναφοράς. Η διεύθυνση της εξάρμοσης κατευθύνεται προς το εσωτερικό του κρυστάλλου

GaN

Μηχανισμοί απορρόφησης της δομικής παραμόρφωσης στη διεπιφάνεια

(a) (a) Διεπιφάνεια μεταξύ ^{274χ} υποστρώματος σαπφείρου μετά από νιτριδίωση χαμηλής θερμοκρασίας και στρώματος πυρηνοποίησης GaN χαμηλής θερμοκρασίας.

(β) Διεπιφάνεια μεταξύ υποστρώματος σαπφείρου μετά από νιτριδίωση χαμηλής Θερμοκρασίας και στρώματος πυρηνοποίησης ΑΙΝ χαμηλής Θερμοκρασίας.
(γ) Διεπιφάνεια μεταξύ υποστρώματος σαπφείρου μετά από νιτριδίωση υψηλής Θερμοκρασίας και

στρώματος πυρηνοποίησης GaN χαμηλής θερμοκρασίας.

Εικόνες HRTEM διεπιφανειών υποστρώματος Al₂O₃ με υμένια GaN και AIN (προβολή κατά <2<u>11</u>0>e/<10<u>1</u>0>s)

Al2O3

Οι αντίστοιχες εικόνες μετά από Fourier filtering όπου αναδεικνύονται οι σειρές των εξαρμόσεων συναρμογής.

ElMicLa Ισαποστάσεις εξαρμόσεων (a) 8-8-7-7-7-8-8-7 Al₂O₃ -> 13.33% -> υπολ. θλιπτική παραμ. 9-9 Al₂O₃ -> -11.12% -> (b) υπολ. Θλιπτική παραμ. (c) 9-9 Al₂O₃ -> διάχυτη

ενδιάμεση στρώση ΑΙΝ

In <u>both</u> nonpolar and semipolar growths, and in <u>both</u> GaN and AlN the interfacial nanocrystals are related to the matrix by a 90°<<u>1</u>2<u>1</u>0> rotation

Cross sectional HRTEM along [<u>11</u>23]_{AIN} // [0001]_{Al2O3} showing semipolar and nonpolar AIN on m-sapphire.

13.4% misfit for semipolar AIN is accommodated by lattice dislocations with <u>inclined</u> BVs, $\underline{b} = a_i = 1/3 < \underline{1}210$ or a_i+c

Cross sectional HRTEM image along [<u>11</u>23]_{AIN}/[0001]_{AI203} and superimposed e_{xx} lattice strain map.

Observation Low-Angle Grain Boundaries comprising primary lattice dislocations with $a_i =$ 1/3<1210> **Burgers vector** components.

Cross-sectional HRTEM along $[0001]_{GaN}$ of two abutting GaN grains with a 7. 13° tilt LAGB.

Bragg-filtered image of the LAGB showing extra halfplanes due to dislocations. Phase map obtained by using the inplane GaN spatial frequencies, showing phase changes due to the primary dislocation array.

Διδυμίες ή δίδυμοι κρύσταλλοι

- R Γενικός ορισμός: ορισμένη διαφορά στον προσανατολισμό μεταξύ δύο κρυσταλλιτών με την ίδια δομή
 - Νόμος διδυμίας: διεργασία συμμετρίας για το μετασχηματισμό του ενός κρυσταλλίτη στον άλλο

NMMG

- Συνήθως υπάρχει ένα επίπεδο κατοπτρισμού που συμπίπτει με το επίπεδο διδυμίας
- Συχνά οι διδυμίες σχηματίζονται κατά τη διάρκεια της ανάπτυξης του κρυστάλλου

Ηλεκτρονικό Μικροσκόπιο Σαρωτικής δέσμης

Οι δύο τύποι ανιχνευτών που χρησιμοποιούνται στα SEM

(left) Backscattered electron image (BEI)

(right) Secondary electron image (SEI)

(left) Topography image (TOPO)

(right) X-ray image (Si)

(left) Composition image (COMPO)

(right) X-ray image (AI)

Φάσμα ακτίνων-Χ έντασης - ενέργειας (EDS)

stem_df_overview MAG: 3000000 x HV: 200,0 KV WD: 0,0 mm

Electron Backscattered diffraction (EBSP) Electron Channeling Pattern (ECP)

Structure and morphology of the nanodiscs Z-contrast imaging

Dome-like morphology of InGaN. (0001) planes bounded by $\{10\underline{1}L\}$ facets (L is 1,2,3. The $\{10\underline{1}L\}$ planes provide low-coordinated lattice sites where Ga and In adatoms may be effectively incorporated

Elemental distribution by energy-dispersive X-ray spectroscopy (EDXS)

NMMG			ElMicLab S S
C-K Ga-L Ga-L Ga-L Si-K In-L Cu-K Ga-K Side wall layer 12 layer 10 layer 8 100 1 2 3 4 5 6 7 8 9 10 Energy [eV]	Spectrum	c _{ln} at.% (In-K)	c _{Ga} at.% (Ga-K)
	side wall	4	46
	layer 12	23	27
	layer 10	22	28
	layer 8	23	27
	layer 6	17	33
	layer 4	14	36
Chemical composition c of the individual (In,Ga)N nanodiscs as calculated from the spectra. The error is ±2 at.%.	C-L factors	s: Ga-K In-K N-K	2.059 31.565 3.193

The Cliff-Lorimer (C-L) factors applied for the calculation of the composition were experimentally determined for GaN. The side wall of the nanowire is found to contain only a small amount (4 at%) of In.

NMMG

B

STEM EELS line scan of the low energy loss across three (In,Ga)N nanodiscs. The zero loss peak is cut in intensity to better visualize the contribution of the 1st plasmon peak. The path of the scan is given in the HAADF STEM image.

Extraction of the inelastic contribution (green) to the experimental (red) EEL spectrum by subtraction of the modelled zero loss peak. Alternatively the EEL spectrum of the vacuum was used for extracting the net signal.

Inelastic contribution to the low loss part of the EEL spectrum. The 1st plasmon peak of non-strained GaN (cf. green spectrum) is identified at 19 eV. The comparison of the spectrum received for a strained GaN disc (cf. layer 2) gives a shift of the 1st plasmon peak to lower energies by about 0.5 eV. For (In,Ga)N this peak is shifted by another 0.5 eV to 18 eV. For the layers deposited on top an averaging is observed which might be contributed to a projection effect of the nano-domes.

Strain state of InGaN NDs

Average lattice strain of the InGaN NDs : 5.6% (± 0.6%)
Lattice parameter c of the InGaN QDs: 0.547 (±0.003) nm
Assuming biaxial strain the average In percentage in the NDs is 34%

EELS Core loss

The contribution of indium is clearly seen for the nanodisc.

ElMicLab

Spatial Drift Spectrum Image

20 rm

